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Abstract Objective: Natural language processing (NLP) approaches have been explored to manage and mine
information recorded in biological literature. A critical step for biological literature mining is biological named
entity tagging (BNET) that identifies names mentioned in text and normalizes them with entries in biological
databases. The aim of this study was to provide quantitative assessment of the complexity of BNET on protein
entities through BioThesaurus, a thesaurus of gene/protein names for UniProt knowledgebase (UniProtKB) entries
that was acquired using online resources.

Methods: We evaluated the complexity through several perspectives: ambiguity (i.e., the number of
genes/proteins represented by one name), synonymy (i.e., the number of names associated with the same gene/
protein), and coverage (i.e., the percentage of gene/protein names in text included in the thesaurus). We also
normalized names in BioThesaurus and measures were obtained twice, once before normalization and once after.

Results: The current version of BioThesaurus has over 2.6 million names or 2.1 million normalized names
covering more than 1.8 million UniProtKB entries. The average synonymy is 3.53 (2.86 after normalization),
ambiguity is 2.31 before normalization and 2.32 after, while the coverage is 94.0% based on the BioCreAtive data
set comprising MEDLINE abstracts containing genes/proteins.

Conclusion: The study indicated that names for genes/proteins are highly ambiguous and there are usually
multiple names for the same gene or protein. It also demonstrated that most gene/protein names appearing in
text can be found in BioThesaurus.
� J Am Med Inform Assoc. 2006;13:497–507. DOI 10.1197/jamia.M2085.
Introduction
Natural language processing (NLP) approaches have been
explored to manage and mine information recorded in
biological literature.1–15 One critical step for the develop-
ment of NLP applications in the biomedical domain is
biological named entity tagging (BNET) that identifies
names mentioned in text and normalizes them with entries
in biological databases.16,17 For example, in EDGAR,2 which
extracted relationships between cancer-related drugs and
genes from the literature, terms for genes need to be
identified before the extraction of the relationships. In vari-
ous pathway construction NLP systems,8–11 the identifica-
tion of biological entity terms such as genes/proteins is the
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crucial component in order to construct molecular pathways
from the text.

Methods for biological entity name identification can be
categorized in two ways: one is to use a dictionary and a
mapping method12,18–20 and the other is to mark up terms in
the text according to contextual cues or specific verbs.21–23

The performance of systems relying on dictionaries depends
on the coverage of the dictionary and a method to disam-
biguate gene/protein names from other biomedical terms or
general English words. Another requirement is the ability to
associate these names with corresponding entries in biomed-
ical databases in order to be used by other automated
systems for literature mining.14,20 This task is called biolog-
ical entity name normalization, which requires a knowledge
base that associates names identified in text with entries in
databases. We refer to the task that identifies entity terms in
the text and associates them with entries in the database as
biological named entity tagging (BNET). BNET is not a
trivial task because of several characteristics associated with
biological entity names, namely: synonymy (i.e., different
terms refer to the same database entry), ambiguity (i.e., one
term is associated with different entries), and novelty (i.e.,
entity terms or entities are not present in databases or
knowledge bases). Both tasks (i.e., biological entity name
identification and biological entity name normalization)
were tackled by the researchers in the community (i.e., Task
1A and Task 1B) in the first BioCreAtive workshop (Critical

Assessment of Information Extraction in Biology) (see
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http://www.pdg.cnb.uam.es/BioLINK/BioCreAtive.eval.
html and http://www.mitre.org/public/BioCreAtive/).14 The
performance of the systems participating in the workshop was
measured using precision, recall, and F-Measure. A system’s
precision is defined as the ratio of the number of names (or
entities) correctly identified (or normalized) to the total number
of names (or entities) being identified (or normalized). A
system’s recall is defined as the ratio of the number of names
(or entities) correctly identified (or normalized) to the total
number of names (or entities) in the test set. An F-Measure of
a system is defined as the harmonic mean of its precision and
recall. In the following, we provide a brief summary of the
workshop related to the above two tasks.

For the biological entity name identification task (Task 1A),
the data were prepared using a gene/protein name tagger,
AbGene,22 and manually curated by domain experts.17,24

There were 15 teams in Task 1A and a number of teams
achieved F-Measure of 80%. Most systems in Task 1A fell
into the following two machine learning approaches: Statis-
tical modeling25–27 and Support vector machine.27–29 Besides
machine learning approaches, a rule-based system, Text
Detective, was using a combination of handcrafted rules
with lexical knowledge sources to identify genes mentioned
in the text.30 The teams that achieved an F-Measure of 90%
or more tended to use Statistical modeling together with
post-processing methods, various features, and external
knowledge sources. The data for the normalization task of
BioCreAtive (Task 1B)31 were prepared using a gene list
associated with the full journal articles found in the model
organism databases, i.e., SGD (yeast),32 MGD (mouse),33 and
Flybase (fly).34 As described by Hirschman et al.,14 the
normalization task can be divided into several steps: i)
identifying gene occurrences in the text; ii) associating gene
occurrences to one or more unique gene identifiers; iii)
selecting the correct identifier in case of ambiguity; and iv)
assembling the final gene list for each abstract. Eight systems
participated in the evaluation and a variety of approaches
were adapted for the above steps.19,30,35 Generally, identify-
ing gene occurrences in text can be classified into two
groups: i) matching against the lexical resource 36,37; and ii)
using the results obtained in Task 1A. The second step was
simply a table look-up. The methods used to select unique
identifiers fell into two categories: prune the lexical resource
by removing ambiguous lexicon, or perform word sense
disambiguation. Most systems used thresholds to select final
lists and one system applied a maximum entropy classifier
for removing bad matches. The precision and recall rates
reported for Task 1B ranged from a maximum of 92%
F-Measure for yeast to 79% for mouse. We participated in
Task 1B and used an extensive list of synonyms obtained
from online resources to perform biological named entity
identification and normalization. The system achieved the
best recall for mouse and yeast while the precision needs to
be improved. Incorporating more synonyms into the system
could improve recall while word sense disambiguation
would be critical to improve the precision.12

In this paper, we present a quantitative assessment of the
complexity of dictionary-based protein named entity tag-
ging where a protein named entity thesaurus, BioThesaurus,
was assessed on synonymy, ambiguity and coverage. In the

following, we first present background and related work.
The assessment method is presented next. We then provide
a discussion and conclude our work.

Background and Related Work
In this section, we first present a brief description of
BioThesaurus. Background information about synonymy,
ambiguity, and coverage is described next. We then
provide background description of online resources used
in the study. Examples of synonymy and ambiguity as
well as related work are then given next.

BioThesaurus
BioThesaurus38 is a Web-based system designed to map a
comprehensive collection of protein and gene names to
protein entries in the UniProt Knowledgebase (UniProtKB),
a knowledge base of protein sequence and function created
by UniProt—the Universal Protein Resource.39 UnitProtKB
combined information contained in three databases: Swiss-
Prot (a curated protein sequence database), TrEMBL (a
computer-annotated supplement of Swiss-Prot, translated
from nucleotide sequence database EMBL), and PIR-PSD
(PIR-International Protein Sequence Database). Currently
covering more than two million proteins, BioThesaurus
consists of over 2.8 million names extracted from multiple
molecular biological databases according to the database
cross-references in iProClass, an integrated database that
provides rich links with executive summaries to over 90
biological databases.40 An overview of BioThesaurus con-
struction is shown in Figure 1. The thesaurus was designed
to provide comprehensive gene/protein names for all pro-
tein entries in UniProtKB. An extensive collection of names
was extracted from many online resources according to
database cross-references in iProClass. A parser was devel-
oped to automatically gather names from the underlying
sources and parse individual names from annotation fields
that contain multiple names separated by parentheses or
other delimiters such as semicolons or commas. A raw
thesaurus was then compiled, associating names with the
corresponding UniProtKB entries. The raw thesaurus was
further filtered to remove highly ambiguous and nonsensi-
cal names. The “name filter” was compiled based on fre-
quency counts of names in UniProtKB entries and by curator
judgment as “nonsensical.” Examples of filtered names
include “novel protein,” “fragment,” and “hypothetical pro-
tein.” We also mapped names in the thesaurus to concepts in
the UMLS (Unified Medical Language System),41 a biomed-
ical knowledge resource. Note that mapping names to
UMLS concepts can be helpful for further curating the
thesaurus. Some usages of semicolons and parentheses in
annotation fields were not for separating synonyms but for
comments, while our parser could not distinguish them and
extract those comments as names. For example, the usages
of parentheses in the description field for UniProtKB entry
Q727V5, “precorrin-6Y C5,15-methyltransferase (decarboxy-
lating)” and that for entry Q5JBL9, “TraA fimbrial protein
precursor (pilin)” are different where the latter one is used
to denote a synonym while the former one is not.

Characteristics Associated with Biological Entity
Names
There are several characteristics associated with biological

entity names: synonymy (also referred to as alias), ambigu-
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ity (or referred to as homonymy) and coverage (or novelty),
which are detailed in the following.

Synonymy—Different terms can refer to the same entity.
The synonymous pairs can be classified into two types:
derivable and non-derivable. A pair is considered derivable
if one can be derived from the other algorithmically (i.e., can
be unified through ignoring cases or punctuations, normal-
izing morphological difference, or ignoring word order).
Another type of derivable is abbreviation-derivable. For
example, the pair (“cAMP receptor protein,” “cyclic AMP
receptor protein”) is derivable because “cAMP” is an abbre-
viation for “cyclic AMP.” In contrast, the synonymous pair
(“cyclic AMP receptor protein,” “catabolite activator pro-
tein”) is non-derivable. Different methods have been used to
recognize synonyms. One way to obtain synonyms is to use
various online knowledge resources. For example, synony-
mous relations that are specified in the UMLS can be used to
recognize synonym pairs (e.g., “cyclic AMP receptor pro-
tein” and “catabolite activator protein” were associated with
the same UMLS Concept Unique Identifier, C0007364). For
abbreviation-derivable pairs, methods such as mapping ab-
breviations to full names using contextual cues (e.g., paren-
theses) have been developed. Wren et al. provided a review
of a list of abbreviation databases obtained by extracting full
names for abbreviations from text using either patter-based
methods or supervised machine learning methods that are
available to the public.42 Non-derivable synonymous pairs
can be detected using contextual cues, such as “also called”
or “also known as.”43 For example, the synonymous pair
“IL-8,” “neutrophil-activating peptide 1” can be detected in
the sentence “IL-8 (also known as neutrophil-activating
peptide 1) is recognized as a potent effector of neutrophil

F i g u r e 1. The construction of BioThesaurus. Annotation
TrEMBL were extracted and associated with iProClass entr
model organism databases, HUGO, and ENZYME etc. T
Dictionary. An automatic curation process was performed
entries in the raw dictionary and removed nonsensical term
associated with entities from iProClass. BioThesaurus co
relationships among entities sharing the same name, biolog
information exploration.
functions.”
Ambiguity—One term can be associated with different
entities as well as other concepts. The ambiguity of biolog-
ical entity terms can be classified into four different types:

• Systematic ambiguity—terms that represent concepts that
are closely related. For example, gene products (e.g.,
mRNA or proteins) are usually represented by names
that refer to genes (note that such ambiguity has been
referred to as class ambiguity in the literature).44 Homol-
ogous genes are usually represented by the same name.
For example, “CAP” refers to rat cystinyl aminopepti-
dase protein and also human cystinyl aminopeptidase
protein.

• Entity-specific ambiguity—terms that represent multiple
un-related proteins/genes. For example, the term “CAP”
refers to biological entities, such as capsid protein, cys-
tine aminopeptidase, catabolite gene-activator protein,
cyclase-associated protein, and calcium activated pro-
tease.

• Cross-medicine ambiguity—terms that refer to clinical
terms as well as protein/gene terms. For example, the
term “CAP” also refers to the following clinical concepts:
community acquired pneumonia, congenital alveolar
proteinosis, cochlear action potential, carotid artery pres-
sure, and compound action potentials.

• Cross-general ambiguity—symbols that are also general
English words. For example, the following are common
English words and also biological entity terms (“not,”
“can,” “bad,” and “for”).

Several researchers have started to investigate the ambiguity
issues. Hatzivassiloglou et al. considered systematic ambi-
guity (i.e., classifying names to three different classes: gene,

from Genpept, PSD, RefSeq, Entrez GENE, Swiss-Prot and
veral other databases were also included including several
obtained from the annotation fields comprised the Raw
the UMLS. We also manually inspected high ambiguous
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niques to disambiguate the semantic context of a term with
precision up to 85%.44 However, in the same paper, they also
reported a pair-wise agreement between experts is around
77.5%. In several previous studies,45–47 we demonstrated
that classifiers could be constructed in an unsupervised way
for disambiguation of frequently occurring ambiguous bio-
medical abbreviations with a precision over 95%. A similar
method was also proposed by Gaudan et al. to resolve
abbreviations.48 Schijvenaar et al.49 proposed a thesaurus-
based disambiguation method for ambiguous human gene
symbols. They claimed that an overall accuracy of the
disambiguation algorithm was up to 92.7% on a test set
automatically generated from MEDLINE. However, they
did not mention the recall of the disambiguation algorithm.
The work of Chang et al., GAPSCORE, handles the synon-
ymy and ambiguity of terms based on a statistical model of
gene names that quantifies their appearance, morphology
and context.50 The method requires a human-annotated
corpus and when evaluating against the Yapex data set,51

the method achieved an F-measure of 82.5% for partial
matching and 57.6% for exact matching. In the BioCreAtive
workshop, various methods have been proposed for disam-
biguation. For example, Hanisch et al. used a multi-stage
process that included correlating abbreviations with their
full names and also a filter for abstracts based on organism
specificity.19 Our system in the BioCreAtive task used fea-
tures derived from online resources to create feature vectors
used in word sense disambiguation.37 Crim et al. used
maximum entropy classifier to disambiguate.36 Currently,
no work has been reported that disambiguates the cross-
general ambiguous biomedical terms.

Coverage—Novelty or coverage refer to entity names in
text that are not present in databases or knowledge
sources. There are two cases of novelty. One case concerns
a new term for an existing biological entity, which may be
due to the discovery of a new function or to a new
derivable synonym or text variants of an existing term
that could not be detected automatically. Such novelty is
term novelty (or term coverage). The other case concerns
a term for a new biological entity that we call conceptual
coverage. Currently, there are very few studies on the
coverage of names in databases of knowledge sources.

UniRef Databases
In order to assess systematic ambiguity caused by homol-
ogous entries, we used the UniProtKB Non-redundant
Reference (UniRef) databases which combine similar se-
quences into a single record based on sequence similari-
ties of UniProtKB entries.39 Three UniRef data sets (Uni-
Ref100, UniRef90 and UniRef50) are available for
download: UniRef100 combines identical sequences and
sub-fragments into a single UniRef entry; and UniRef90
and UniRef50 are built by clustering UniRef100 sequences
into clusters based on the CD-HIT algorithm such that
each cluster is composed of sequences that have at least
90% or 50% sequence similarity, respectively, to the
representative sequence.52 Since homologous entries in
UniProtKB can share sequence similarities ranging from
over 90% for close homologs to well below 50% for remote
homologs, utilizing UniRef databases, we could assess

systematic ambiguity caused by homologous proteins.
Examples of Ambiguity and Synonymy in
BioThesaurus
Figure 2 shows 17 synonymous protein names from
multiple data sources for the human PDZ and LIM
domain protein 1 (UniProt entry O00151). The names and
synonyms can be normalized based on case and morpho-
logical variations and the number of synonyms decreases
to 11 after normalization. Figure 3 shows both entity-
specific and systematic ambiguities of protein names. The
eight UniProtKB entries associated with “CLIM1” demon-
strate both systematic ambiguity resulting from protein
homology and name overloading from gene symbols that
represent different proteins. Indeed there are three heter-
ogeneous groups of proteins as indicated by their differ-
ent assignments in UniRef90/50 sequence clusters as well
as in distinct families in PIRSF (PIR SuperFamily), a
protein family classification system at PIR that classifies
proteins based on global sequence similarities of full-
length proteins to reflect their evolutionary relation-
ships.56 The “CLIM1” example represents entity-specific
ambiguity among the three PIRSF families as well as
systematic ambiguity within each PIRSF family. Examina-
tion of the source of protein name ambiguities revealed
that “CLIM1” was derived from “human 36-Kda carboxyl
terminal LIM domain protein (hCLIM1),” a cytoskeleton
regulator.53 Independently, “cofactors of LIM homeodo-
main proteins,” transcriptional activators associated with
the LIM homeoproteins, were abbreviated as “CLIM,” and
two forms of CLIMs were named as “CLIM1” and
“CLIM2,” respectively.54 Clearly, the ambiguity could
arise from independent naming of different proteins.
However, it is not clear how “CLIM1” was annotated as a
synonym of “polymeric immunoglobulin receptor” found
in MGD.

Related Work
In Chen et al.,55 gene information associated with 21
organisms was obtained and quantified, naming ambigu-
ity with species, across species, with English words and
with medical terms, was measured. The purpose of
Chen’s work was to study gene name ambiguity associ-
ated with eukaryotic nomenclatures that were obtained
from each specific organism database, where the assess-
ment of ambiguity did not distinguish systematic ambi-
guity from other types of ambiguity.

Here, we assessed the complexity of dictionary-based
biological named entity tagging through several aspects
related to biological entity names. According to our
knowledge, there is no related work that provides a
detailed analysis of synonymy, ambiguity and coverage of
a thesaurus for all protein records in UniProtKB with
respect to biological named entity tagging even though
most researchers are aware of them.12

Methods
In the study, we first generated the gene/protein name
thesaurus using the iProClass release 2.67. Noticing the
ambiguous usages of parentheses and semicolons in an-
notation fields of online resources, we post-processed
BioThesaurus to remove obvious non-protein names ob-
tained from the online resources such as species names

using the UMLS that is described in the following. We
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then evaluated BioThesaurus with respect to three char-
acteristics: synonymy, ambiguity, and coverage.

Data Preparation
A version of BioThesaurus was constructed using the
iProClass release 2.67 (May 15, 2005). As we have pre-
sented earlier in this paper, BioThesaurus associates terms
derived from various online resources with protein
records in UniProtKB. To prepare data for our analysis,
BioThesaurus was computationally curated using the
UMLS to remove terms that are obviously not genes/
proteins such as cells, small molecules, or organisms
(Figure 1; also see Background section for rationale). To
do this, we first identified the UMLS semantic categories
that correspond to genes/proteins. For each UMLS se-
mantic category, we counted the number of terms in the
raw dictionary with seven or more letters that can be
found in the UMLS using strict string matching while
ignoring care differences. The reason for restricting to
terms with seven or more letters in the process is that

F i g u r e 2. Synonymous protein
names from multiple data sources
(UniProtKB: O00151). Names/syn-
onyms of the protein entry are listed
based on their rank of frequency (in
parentheses) of unique sources (Source
Attribute) from which the names are
derived. Names with higher frequency
may correlate with their more popular
usage than those with lower frequency.
Textual variants provide the name as
appeared from the source of its origin.
abbreviations especially with less than seven letters are
used frequently for medical concepts as well as for
genes/proteins; including them in the identification pro-
cess will favor categories that contain many abbreviations
(e.g., body part). Based on the acquired frequency infor-
mation and the UMLS semantic category definition, we
derived a list of UMLS semantic categories containing
genes/proteins. We considered terms with a semantic
category not in this list as ones representing other types of
concepts instead of genes/proteins. After removing terms
representing non-gene or non-protein concepts and those
that are nonsensical, we acquired the final thesaurus for
assessment.

Assessment
Gene/protein names in BioThesaurus were assessed ac-
cording to the three major characteristics of biological
entity names—synonymy, ambiguity, and coverage. The
assessment was conducted under two circumstances: i)
using names before or after normalization, and ii) includ-
ing or removing systematic ambiguity. Name normaliza-

tion is to convert names to lower cases, to remove
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punctuation marks, and to unify morphological variants.
The normalization was done because most mapping
methods used by biological named entity tagging systems
can handle derivable synonyms, such as case variants
(e.g., “arsC” vs. “ARSC”), punctuation variants (e.g.,
“IL12A” vs. “IL-12A”), and morphological variants (e.g.,
“superoxide dismutase” vs. “superoxide dismutases”).

Removing systematic ambiguity (the same name for ho-
mologous proteins across species) can help estimate the
extent of name ambiguity for entities representing differ-
ent functions (entity-specific) and concepts from different
domains (cross-medicine) in the thesaurus. Systematic
ambiguity can be removed based on a full-scale family
classification system with curated families of homologous
proteins. While the PIRSF family classification provides
manually curated families of full-length proteins, the
curated families of the system have not covered the
complete UniProtKB (coverage �50%–75%).56 Instead, we
used the UniRef clusters as a way for removing systematic
ambiguity. UniRef clusters provide full-scale automatic
clustering of all UniProtKB entries based on sequence
identity, and the clusters even at 50% sequence identity
level (UniRef50) were found to well correspond to one
PIRSF family, even to a subfamily within the PIRSF
family. To remove systematic ambiguity, we grouped
protein entries belonging to the same UniRef90 or Uni-
Ref50 clusters, where proteins shared at least 90% or 50%
sequence identity, respectively. We manually inspected
several UniRef50 clusters and found all proteins in the
same cluster belong to the same PIRSF family.

The synonymy is a measure of the number of names per

F i g u r e 3. Protein name ambiguities using query of “CLIM
eight UniProtKB entries (ambiguity of 8); each is displayed
families and Pfam domains. The UniRef cluster and PIRSF
disregarding the homologous proteins, in this case, the ambi
In fact, the eight proteins belong to three functionally heter
UniProtKB entry (i.e., entity). The average synonymy was
measured by the total number of entity-name pairs (EID,
NAME) in BioThesaurus divided by the total number of
entities with one or more names, where EID is UniProtKB
entry ID and Name is gene/protein name. We counted the
number of entities in eight synonymy ranges: 1, 2, 3– 4,
5– 8, 9 –16, 17–32, 33– 64, and �64 (i.e., [2n -1, 2n�1] for n
from 1 to 5). We also measured the synonymy considering
systematic ambiguity by using UniRef90 and UniRef50 to
group UniProtKB entries.

The ambiguity is a measure of the number of UniProtKB
entries per name. The average ambiguity was measured
by the total number of entity-name pairs (EID, NAME)
divided by the total number of names. We counted the
number of names in eight ambiguity ranges: 1, 2, 3– 4, 5– 8,
9 –16, 17–32, 33– 64, and �64. The ambiguity of BioThe-
saurus with biomedical concepts was assessed based on
names that were mapped to the UMLS concepts with
semantic categories that were not highly related to gene or
proteins. The ambiguity with general English words was
assessed by matching single-word names in BioThesaurus
with a common English word list we assembled using
frequent word lists generated by Waring (http://www1.
harenet.ne.jp/�waring/vocab/wordlists/vocfreq.html).

We evaluated the term coverage using the test set of Task
1B provided by the 2003 BioCreAtive Workshop for three
model organisms (yeast, mouse, and fly). The following is
a brief summary of the test set used in BioCreAtive for
Task1B in detail. In the test set, genes that are described in
the associated papers were identified and mapped to
corresponding identifiers in the associated model organ-
ism databases by human experts with a total of 3,375 pairs

om BioThesaurus. The query name “CLIM1” corresponds to
orresponding UniRef clusters (90 and 50), as well as PIRSF

information can be used to estimate the name ambiguity
drops to 4 based on UniRef90 or 50, or to 3 based on PIRSF.
ous groups of proteins.
1” fr
with c
family
guity
of (GENE, PAPER). Among them, the number of pairs
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identified by human experts as GENE that could be
inferred explicitly from the abstract of PAPER was 1,593.
The remaining 1,782 pairs that were judged as either
GENEs were inferred explicitly from full paper or were
inferred implicitly from the paper. Note that systems
participating in Task1B of the 2003 BioCreAtive Work-
shop were evaluated using the 1,593 pairs only. When
assessing the coverage, we also eliminated 250 pairs from
the 1,593 because GENEs were not mapped directly to
UniProtKB protein entries, thus had no corresponding
BioThesaurus records. Note that when considering the
whole 3,375 pairs, a total of 905 pairs did not have
corresponding BioThesaurus records. The final identifier
list consisted of 1,343 identifiers. For each gene GENE,
names associated with GENE were extracted from
BioThesaurus and, if there was at least one occurrence of
any of those names in the associated abstract, we consid-
ered GENE was covered by BioThesaurus. Note that when
identifying the occurrences of those terms, we used the
normalized form of the terms. We computed the percent-
age of identifiers for each model organism that were
covered by BioThesaurus.

To map to the correct entity, biological named entity
tagging systems need to resolve ambiguity of terms that
occur in the text. We assessed the ambiguity using the
following methods. For each pair (GENE, ABSTRACT),
there might be multiple terms associated with GENE
occurring in ABSTRACT, and they may have various
ambiguities. Tagging systems need to at least resolve the
ambiguity of the least ambiguous term (that is, the term
with the least number of gene identifiers associated with
it) in order to map to the right entity. We considered the
ambiguity of the least ambiguous term as the ambiguity
that BNET systems need to resolve. We measured the
ambiguity that BNET systems need to resolve twice: once
considering systematic ambiguity and once ignoring sys-
tematic ambiguity according to UniRef90.

Results
The version of BioThesaurus used here consisted of 1.8

Table 1 y UMLS Semantic Categories Highly Related t
Semantic Category ID Semantic

T116 Amino acid, pepti
T028 Gene or genome
T126 Enzyme
T123 Biologically active
T192 Receptor
T129 Immunologic facto
T121 Pharmacologic sub
T109 Organic chemical
T044 Molecular function
T047 Disease or syndrom
T125 Hormone
T131 Hazardous or pois
T124 Neuroreactive sub
T118 Carbohydrate
T114 Nucleic acid, nucle
T119 Lipid
T059 Laboratory proced
T045 Genetic function
million UniProtKB entries with a total of 3.2 million names.
A total of 34,598 names in BioThesaurus were mapped to
concepts from 120 (out of 134) UMLS semantic categories
when ignoring cases. Among them, we considered 18 cate-
gories highly related to genes/proteins based on the UMLS
semantic category definitions. Table 1 lists these 18 catego-
ries with the number of mapped names. The top seven
UMLS semantic categories: Amino Acid, Peptide, or Protein
(T116), Gene or Genome (T028), Enzyme (T126), Biological
Active Substance (T123), Receptor (T192), Immunological
Factor (T129), and Pharmacologic Substance (T121), each
had over one thousand matched names. Note that some
categories listed in Table 1 are not concepts for genes/
proteins per se but are highly related. For example, disease
or syndrome (T047) and lab procedure (T059) are highly
related to genes/proteins because disease terms are often
used to name disease genes/proteins (e.g., disease name
“Wolman disease” used to name the associated protein with
UniProtKB identifier Q5T073) and lab procedures involving
genes/proteins may be named after them (e.g., enzyme
name Leucine aminopeptidase used to name the associated
lab procedure with UMLS identifier C0202118). Several
UMLS semantic categories had more than 100 matched
names in BioThesaurus but were not deemed highly related
to genes/proteins based on their definitions, such as Plant
(T002), cell component (T026), Body Part, Organ or Organ
Component (T023), and a few other categories (e.g., Quan-
titative Concept (T081) and Intellectual Product (T170)).

As shown in Table 2, the average synonymy of each
BioThesaurus record is 3.53 (i.e., one protein entry is
represented by an average of 3.53 names). After normal-
ization, there were 2,106,222 names with an average
synonymy 2.32. After grouping homologous entries and
combining their names to remove systematic ambiguity
according to UniRef90 and UniRef50, the number of
entries is reduced to 1,015,207 and 580,956 respectively,
and the synonymy was increased to 4.41 and 6.13 respec-
tively before normalization and 3.61 and 4.90 respectively
after.

The ambiguity result of BioThesaurus shows that the

es/Proteins Concepts
Definition # Matched Concepts

rotein 24,471
16,029
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majority of names (83.7%) were associated with a single
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UniProtKB entry, with an average ambiguity of 2.31 for
the 2,665,968 names (Table 3). After normalization, the
average ambiguity of the 2,106,222 names is slightly
increased to 2.32. When systematic ambiguity was re-
moved according to UniRef90 and UniRef50, the ambigu-
ity dropped to 1.77 and 1.46 respectively before normal-
ization and 1.79 and 1.49 respectively after.

The cross-biomedical domain ambiguity was evaluated
based on BioThesaurus names that were mapped to terms

Table 2 y The synonymy assessment result of BioThes
systematic ambiguity, UniRef90 shows measures after
for measures after grouping entities according to Uni
2, 3–4, 5–8, 9–16, 17–32, 33–64, and �64). The averag
dictionary are also provided. The percentage in paren
the range to the total number of entities.

# of Synonyms

Original

Before Norm. After Norm.

1 154,444 368,141
(8.6%) (20.4%)

2 523,523 887,875
(29.1%) (49.3%)

3–4 808,714 299,472
(44.9%) (16.6%)

5–8 222,083 175,789
(12.3%) (9.8%)

9–16 76,031 57,598
(4.2%) (3.2%)

17–32 14,761 11,034
(8.2%) (0.6%)

33–64 908 673
(�0.1%) (�0.1%)

�64 41 23
(�0.1%) (�0.1%)

Total entities 1,800,505
Average synonymy 3.53 2.86

Table 3 y The ambiguity assessment result of BioThesa
measured using eight ranges (1, 2, 3–4, 5–8, 9–16, 17–
average ambiguity in the dictionary are also provided
terms with ambiguity in the range to the total numbe

Ambiguity

Before Normalization

Original UniRef90

1 2,233,471 2,233,471
(83.7%) (83.7%)

2 223,698 270,826
(8.4%) (10.2%)

3–4 109,701 94,164
(4.1%) (3.5%)

5–8 53,535 35,528
(2%) (1.3%)

9–16 21,936 15,757
(0.8%) (0.6%)

17–32 10,841 7,579
(0.4%) (0.3%)

33–64 5,646 4,183
(0.2%) (0.2%)

�64 7,140 4,460
(0.3%) (0.2%)

Total names 2,665,968

Average ambiguity 2.31 1.77
in UMLS semantic categories using exact string match.
Among 34,598 matched BioThesaurus names, only 1,483
names (4.3%) were mapped to UMLS semantic categories
not considered highly related to genes/proteins (i.e.,
those not listed in Table 1). After normalization, 2,143
(4.0%) out of 53,052 matched normalized names were
mapped to concepts with categories not considered highly
related to genes/proteins. Examples include “Juvenile,”
“minute,” and “purple.” The common English collection

, where Original denotes measures before removing
ping entities according to UniRef90, and UniRef50
. We measured the synonymy using eight ranges (1,
onymy as well as the total number of entities in the
s shows the percentage of entities with synonymy in

UniRef90 UniRef50

Norm. After Norm. Before Norm. After Norm.

,167 143,594 50,049 70,018
%) (14.1%) (8.6%) (12.1%)
,976 432,730 141,410 216,890

7%) (42.6%) (24.3%) (37.3%)
,322 216,730 177,196 118,454

8%) (21.3%) (30.5%) (20.4%)
,712 146,388 106,232 92,761

0%) (14.4%) (18.3%) (16.0%)
,169 61,331 65,823 55,209
%) (6.0%) (11.3%) (9.5%)
,234 13,046 28,828 20,784
%) (1.3%) (5.0%) (3.6%)
,387 1,271 8,971 5,560
%) (0.1%) (1.5%) (1.0%)
240 117 2,447 1,280

.1%) (�0.1%) (0.4%) (0.2%)
,207 580,956

41 3.64 6.13 4.90

. Refer to Table 2 for notations. The ambiguity was
3–64, and �64). The total number of terms and the
percentage in parentheses shows the percentage of

erms.
After Normalization

iRef50 Original UniRef90 UniRef50
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5,579 9,007 6,208 4,600
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3,134 4,532 3,472 2,700

.1%) (0.2%) (0.2%) (0.1%)
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contained 8,090 words, all in lower case. Among them, 367
were also single-word names in BioThesaurus; when case
difference was ignored, the number increased to 594
words. Examples of gene/protein names in common
English words include “dare,” “air,” “all” and “ago.”

The coverage result is shown in Table 4. The coverage of
BioThesaurus is 94.0%, i.e., there are 1,262 out of 1,343
pairs of (GENE, ABSTRACT) where at least one name
associated with GENE in BioThesaurus occurred in
ABSTRACT. Additionally, 119 out of 1,127 (i.e., 3,375–905–
1,343) pairs of (GENE, ABSTRACT), which were originally
curated as a GENE that was not explicitly mentioned in
ABSTRACT, were found to be errors since names associated
with GENE in BioThesaurus were actually found to occur in
ABSTRACT.

The ambiguity that a dictionary-based BNET system
needs to resolve according to BioCreAtive text was in the
range of 28 –55 when including systematic ambiguity. It
dropped to the range of 13–23 when ignoring systematic
ambiguity. If we ignore other types of ambiguity (i.e.,
cross-general ambiguity and cross-medicine ambiguity), a
base system which randomly picks an entity for those
ambiguous terms could achieve a precision in the range of
1.8%–3.4% when including systematic ambiguity and of
4.5%–7.5% when ignoring systematic ambiguity (i.e.,
when we only consider entity-specific ambiguity, a base
dictionary-based BNET system achieved a precision in the
range of 4.5%–7.5% and a recall in the range of 91.5%–98%
for BioCreAtive Task1B test set).

Discussion and Conclusion
In this paper we have assessed BioThesaurus regarding its
ambiguity, synonymy, and coverage to reveal the complex-
ity of dictionary-based biological named entity tagging.
Most existing NLP systems currently do not associate terms
appearing in the text with database entries and they do not
need to resolve entity-specific ambiguity (i.e., a term repre-
sents multiple database entries). The dictionary we con-
structed links terms with protein entries in UniProtKB.
Using the comprehensive cross-reference information stored
in iProClass, entities (i.e., concepts) in the dictionary can be
tailored for systems that use records in other databases, such
as SGD and MGD, cross-referenced by iProClass.

Because of the incomplete coverage of all UniProtKB records

Table 4 y The coverage assessment for BioThesaurus u
percentage in the first column shows the percentage o
percentages in the second, third, and last columns we
precisions of a base system that randomly picks an as

Organisms

The Coverage of Genes
in the Evaluation Set

Present in BioThesaurus

Mentioned in Abstracts
Including

Amb

Yeast 557/595 (93.6%) 55.7
Mouse 346/378 (91.5%) 28.0
Fly 359/370 (98.1%) 50.7
Total 1,262/1,343 (94.0%) 46.9
by the curated classification systems such as PIRSF, we used
UniRef clusters to assess the synonymy and ambiguity when
ignoring systematic ambiguity. In fact, UniRef clusters pro-
vide tighter sequence groupings than PIRSF, i.e., one PIRSF
family can map to one or more UniRef50 clusters. It is
known that functions of some homologous proteins can be
well conserved from higher to lower organisms, while those
of others may only be conserved in close lineage of organ-
isms (e.g., among mammals). Moreover, even homologous
proteins including paralogs sharing high degree of sequence
identity may differ in functions due to changes of key
residues such as active sites (including gaining or losing
functions). It is not known the percentage of such proteins in
UniRef clusters, which is beyond the scope of this paper.
Nonetheless, we feel that using UniRef90 and 50 is still a
reasonable way to estimate the level of name ambiguity
when disregarding systematic ambiguity of homologous
proteins, albeit the true level of this ambiguity could be
higher. One advantage of estimating the name ambiguity by
removing the systematic ambiguity is that it could help
identify protein name misnomers and name annotation
inconsistency in databases. For example, human EGFR (epi-
dermal growth factor receptor) was incorrectly assigned as
gene name of the human EGF entry (UniProtKB: Q8NDU8),
thus, giving the name “EGFR” higher ambiguity.

The assessment of synonymy and ambiguity provided in the
result section was derived disregarding the fact that some
terms may never appear in literature. For terms that actually
occur in the text, the average ambiguity for them tends to be
higher. We could not assess them directly. We plan to
explore ways to assess the real ambiguity in the text. Even
though there are not many terms in BioThesaurus that are
common English words, but they occur frequently in the
literature where most of these occurrences hold meanings
other than biological entities (e.g., all or to). We plan to
investigate further for disambiguating these terms in text. In
the assessment of synonymy, we did not include abbrevia-
tion-derivable in the assessment. It is because most gene/
protein symbols are actually abbreviation-derivable. For
example in Figure 2, the symbol “CLIM1” is abbreviated
from “C-TERMINAL LIM DOMAIN PROTEIN 1.” How-
ever, it is not easy to handle abbreviation-derivable syn-
onyms in entity tagging systems because of their ambigu-
ities. We plan to further study abbreviation-derivable

the test set of the BioCreAtive workshop. The
s in BioCreAtive text present in BioThesaurus. The

quired by inversing the ambiguity which refer to the
ted entity for those ambiguous terms.

he Ambiguity of Matched Terms in BioThesaurus

atic Ignoring Systematic
Ambiguity

Limited to Specific
Organism

23.8 (4.2%) 1.23 (81.3%)
13.4 (7.5%) 1.13 (88.5%)
17.7 (5.6%) 7.34 (13.6%)
19.1 (5.3%) 3.02 (33.1%)
sing
f term
re ac
socia

T

System
iguity

(1.8%)
(3.6%)
(2.0%)
synonyms.
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During the coverage assessment, we removed 250 pairs of
(GENE, ABSTRACT) with no corresponding UniProtKB
records associated with them. Most of them were from fly
(with 63 pairs) and mouse (with 168 pairs). Among these
pairs, almost all were associated with records of non-coding
genomic regions or gene clusters/complexes. For example,
there are over 60 pairs of (GENE, ABSTRACT) in MGI
having a type as DNA segment (e.g., “D2Mit6” with iden-
tifier MGI:92196), over 10 pairs having a type as complex
(e.g., “Hbb” with identifier MGI:96020). Most of such pairs
in fly were associated with transposable elements instead of
coding genes. Pairs in yeast that were not associated with
UniProtKB records are also caused by non-coding gene
records. For example, “HSX1” with identifier S000006707 in
SGD has a type tRNA.

During the assessment, we also found that UniProtKB has
finer granularity than model organism databases for genes
that were cross-referenced by iProClass. For example, 25,514
UniProtKB entries were associated with 16,553 FlyBase
records. One reason is that while entries in model organism
databases are gene-centric, multiple protein products (iso-
forms) from alternative splicing of the same gene can be
represented by multiple entries in UniProtKB. Another
factor is that multiple protein fragments of the same gene
could be represented in UniProtKB, which may have de-
rived from independent labs, and sometimes may be given
different names. For example, there are two UniProtKB
entries (i.e., O76923 for isoform A and O96378 for isoform B)
associated with the Ap-2 gene (FBgn00023417). In mouse,
there are eight UniProtKB entries (e.g., Q08501, Q8C7G1,
Q3UPQ1), including spliced variants and fragments, associ-
ated with one mouse gene Prlr (MGI:97763). Because of this
many-to-one mapping of UniProtKB to the model organism
databases, utilizing the rich cross-reference information sup-
plied by iProClass, BioThesaurus can be tailored to dictio-
naries for entities in other databases (e.g., MGD) by provid-
ing a richer source of protein names and synonyms.

During the coverage assessment study, most terms (94.0%)
identified by human experts in abstract of the BioCreAtive
test set were included in BioThesaurus. It indicates that a
BNET system which simply annotates a term with all
associated entities can achieve a high recall (as high as
94.0%). However, the precision of such system would be
very low since there are a lot of false positives caused by the
ambiguities (as low as 2.1% when considering systematic
ambiguity and entity-specific ambiguity and 5.3% when
only considering entity-specific ambiguity). If we already
know the corresponding organism for the paper, we can
limit entities to a specific organism. The last column of Table
4 shows the result of the ambiguity when we tailored
BioThesaurus to specific organisms. From Table 4, the am-
biguity (including systematic ambiguity and entity-specific
ambiguity) for mouse (or yeast) decreased to 1.23 (or 1.12)
which implies that the precision for a BNET system which
randomly picks an entity from entities associated with an
ambiguous term was 81.3% (or 88.5%). This feature is
helpful in literature-based protein database annotation and
indeed is already used for semi-automatic mapping of
gene/protein names to UniProtKB entries from a rule-based
text mining system RLIMS-P for protein phosphorylation.57
However, the real precision measure for such a system
would be relatively lower because there are problems with
tokenization, cross-general ambiguities, and cross-medicine
ambiguities.

In conclusion, biological entity tagging is an essential task
for NLP systems in the biomedical domain. We assessed
BioThesaurus through several perspectives: ambiguity, syn-
onymy, and coverage. Based on the assessment, we quanti-
fied the complexity of dictionary-based biological named
entity tagging systems. The study demonstrated that most
gene/protein names appearing in text can be found in
BioThesaurus. The study confirmed that biological named
entity tagging is a non-trivial task because of the high
ambiguity of gene and protein names as well as multiple
names corresponding to the same gene/protein. While clas-
sifying ambiguity into different categories and applying
different approaches to resolve these ambiguities, we believe
the performance of dictionary-based biological named entity
tagging could be improved.
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