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Abstract

The exponential growth of large-scale molecular sequence data and of the PubMed scientific literature has prompted active research
in biological literature mining and information extraction to facilitate genome/proteome annotation and improve the quality of biological
databases. Motivated by the promise of text mining methodologies, but at the same time, the lack of adequate curated data for training and
benchmarking, the Protein Information Resource (PIR) has developed a resource for protein literature mining—iProLINK (integrated Protein
Literature INformation and Knowledge). As PIR focuses its effort on the curation of the UniProt protein sequence database, the goal of
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ProLINK is to provide curated data sources that can be utilized for text mining research in the areas of bibliography mapping, a
xtraction, protein named entity recognition, and protein ontology development. The data sources for bibliography mapping and
xtraction include mapped citations (PubMed ID to protein entry and feature line mapping) and annotation-tagged literature co

atter includes several hundred abstracts and full-text articles tagged with experimentally validated post-translational modificatio
nnotated in the PIR protein sequence database. The data sources for entity recognition and ontology development include a p
ictionary, word token dictionaries, protein name-tagged literature corpora along with tagging guidelines, as well as a protein onto
n PIRSF protein family names. iProLINK is freely accessible athttp://pir.georgetown.edu/iprolink, with hypertext links for all downloadab
les.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

Increasingly researchers have studied complex biological
ystems on global scales ranging from genomes and pro-
eomes to metabalomes. Full exploration of these valuable
ata requires advanced bioinformatics infrastructures for bi-
logical knowledge management. In particular, major cu-
ated databases, such as the UniProt protein knowledgebase
Apweiler et al., 2004) and various genome databases, rep-
esent basic resources for biological interpretation of large-
cale data. Of special value in these databases are annotations
erived from experimentally verified published data that rep-
esent the latest scientific knowledge about specific genes
nd proteins. However, the amount of such literature-based
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and manually-curated annotation is rather limited due to
laborious nature of knowledge extraction from the literat

With an ever-increasing volume of scientific literat
now available electronically, there is both a pressing n
and a great opportunity in developing more efficient w
of literature data mining. Indeed, in recent years, n
ral language processing (NLP) technologies are being
lized for biological literature mining and information e
traction (Hirschman et al., 2002a). As a member of th
UniProt consortium, our group at the Protein Informa
Resource (PIR) (Wu et al., 2003a) is primarily interested i
the “database curation” application—namely, extracting
perimental information from the scientific literature and p
ulating the data in appropriate annotation fields of the Uni
database.

The process of applying literature mining methods for
tein database curation involves several tasks (Fig. 1):
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Fig. 1. Bibliography mapping and annotation extraction for literature-based database curation.

• bibliography mapping: identification of articles from lit-
erature sources (such as PubMed) that describe a given
protein entry;

• annotation extraction: categorization of annotation types
and extraction of sentences and/or phrases describing the
given annotation; and

• database curation: conversion of the extracted litera-
ture information into annotation in the database with
structured syntax, controlled vocabulary, and evidence
attribution.

These tasks are also related to the topics of protein named
entity recognition and protein ontology development. A pre-
requisite to bibliography mapping is protein named entity
recognition–identification of protein names from articles.
Furthermore, due to the long-standing problem of protein
nomenclature, a protein ontology can assist entity recogni-
tion with the description of names and synonyms of protein
classes as well as their relationships.

Future progress in biological literature mining and an-
notation extraction requires close collaboration of computa-
tional and biological scientists. Benchmarking data and re-
sources need to be developed for training and evaluating lit-
erature mining methodologies, while biological domain ex-
perts need to provide scientific validation and explanation
for literature mining results. To evaluate the utility of text
m ra-
t such
a
e for-
m
w

Inspired by the promise of text mining methodologies for
database curation, but at the same time, the lack of adequate
curated data for training and benchmarking, PIR has devel-
oped a resource for protein literature mining—iProLINK (in-
tegrated Protein Literature, INformation and Knowledge).
This paper describes the various data sources in iProLINK
and their application to literature mining research.

2. iProLINK overview

The data sources in iProLINK are organized into two ma-
jor categories based on their utilization for text mining/NLP
research (Fig. 2), as summarized below and detailed in Sec-
tions3 and 4.

2.1. Literature-based protein curation

NLP research for literature-based protein curation in-
volves bibliography mapping (to map literature to protein
database entries) and annotation extraction (to extract anno-
tation information from the literature). The corresponding
data sources include:

• bibliography system: bibliography information pages for
D)

for

• ally
res
ining techniques for mining biological data from lite
ure, there have been community evaluation contests
s Knowledge Discovery and Data Mining cup (KDD) (Yeh
t al., 2003) and more recently Critical Assessment of In
ation Extraction systems in Biology (BioCreAtIve) (http://
ww.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html).
all protein entries with protein to PubMed ID (PMI
mapping, as well as a bibliography submission page
researchers to map and submit papers; and
literature corpus: abstracts and full-text articles manu
tagged with experimentally validated protein featu
such as post-translation modifications.

http://www.pdg.cnb.uam.es/biolink/biocreative.eval.html
http://www.pdg.cnb.uam.es/biolink/biocreative.eval.html
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Fig. 2. iProLINK as a resource for text mining research to facilitate protein database curation.

2.2. Protein named entity recognition and ontology
development

To facilitate NLP approaches to named entity recognition
and ontology development, iProLINK includes:

• protein dictionaries: a protein name dictionary consisting
of terms for names, synonyms and acronyms, and word to-
ken dictionaries consisting of biomedical terms, chemical
terms, macromolecules, common English, and non-word
tokens;

• protein ontology: an ontology based on PIRSF (Wu et al.,
2004a) protein family names;

• protein and family naming guidelines: documents outlin-
ing rules and conventions for assigning protein names and
protein family names;

• protein tagging guidelines and Literature Corpus: guide-
lines for tagging protein names in abstracts, and abstracts
manually tagged with protein names.

The resource is freely accessible from the PIR web site
at http://pir.georgetown.edu/iprolink, with a listing and hy-
pertext links for all downloadable files. The site also pro-
vides search mechanisms for accessing the PIR bibliography
system. Protein feature-based searches provide access to pa-
p ked
a min-
i .

3. iProLINK resource for bibliography mapping and
annotation extraction

The inclusion of experimentally validated annotation with
literature citation for evidence attribution can greatly enhance
the quality and value of protein databases. As the volume
of sequence data and scientific literature continues to grow
exponentially, the manual processes by which the evidence
attribution has been done in the past become a bottleneck in
protein database curation. It is essential to develop computa-
tional approaches for the mapping and extraction of protein
experimental data. Indeed, curated databases and their asso-
ciated PubMed abstracts have been used to create annotated
corpora for training classifiers to extract protein localization
information (Craven and Kumlien, 1999).

3.1. PIR bibliography system

Linking protein entries to relevant scientific literature that
describes or characterizes the proteins is crucial for increas-
ing the amount of experimentally verified data and for im-
proving the quality of protein annotation. To provide a more
comprehensive bibliographic coverage for all UniProt protein
entries, PIR has developed a bibliography information sys-
tem. The bibliography system includes a biweekly-updated
b ows-
i for
s

ers with tagged experimental feature evidence. Also lin
re PIR collaborators who are conducting related text

ng/NLP research projects using the iProLINK resource
ibliography database, as well as a web interface for br
ng and searching bibliography information pages and
ubmitting bibliographic data for UniProt proteins.

http://pir.georgetown.edu/iprolink
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The bibliography information page provides, for each
protein entry, reference citations compiled from multiple
sources, including several curated databases. In addition
to the underlying UniProt database (with references com-
bined from Swiss-Prot, TrEMBL, and PIR-PSD), biblio-
graphic data are also collected from databases such as SGD
(Christie et al., 2004), MGD (Blake et al., 2003) and GeneRIF
(Mitchell et al., 2003). Many reference citations are curated,
providing categorization of protein annotation information
contained in the citation. The bibliography submission inter-
face guides users through steps in mapping reference cita-
tions to protein entries, entering the bibliographic data, and
summarizing the contents using categories (such as genetics,
tissue/cellular localization, molecular complex or interaction,
function, regulation, and disease), with evidence attribution
(experimental or predicted) and description of methods.

3.2. PIR feature evidence attribution—citation mapping
and evidence tagging

In the PIR-PSD database, feature annotations such as
binding sites, catalytic sites, and modified sites, are labeled
with status tags “experimental” or “predicted” to distinguish
experimentally verified from computationally predicted
data. However, such “experimental” tags were not originally
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Fig. 3. Evidence attribution and computational extraction of experimental
features in PIR-PSD. (A) Citation-attributed feature with PMID mapping;
(B) annotation-tagged text based on manual curation; (C) annotation-tagged
text based on computational extraction.

feature constitute the “negative” data set. For automatic an-
notation extraction tasks, the annotation-tagged texts can be
used as training corpora for various types of protein sequence
features, which are categorized and described based on a con-
trolled vocabulary.

3.3. Training corpus for protein post-translational
modifications (PTMs)

From the 9788 experimental feature lines, a total of
2037 lines correspond to five post-translational modification
features—phosphorylation, acetylation, glycosylation,
methylation, and hydroxylation. The status of citation
mapping and evidence tagging of the five PTMs is
shown in Table 1 (http://pir.georgetown.edu/cgi-bin/
ttributed with literature citations for the experimen
vidence, even though the relevant citations are us
resent in the Reference section of the PSD sequence r
o appropriately attribute bibliographic data to featu
ith experimental evidence, we have been conduc
retrospective literature survey (Wu et al., 2003b). The

vidence-attributed PSD experimental feature data are
ncorporated into the UniProt knowledgebase.

The retrospective literature survey involves both cita
apping (finding citations from the Reference section
escribe the given experimental feature) and evidence
ing (tagging the sentences providing experimental evid

n an abstract and/or full-text article).Fig. 3 shows an
xample of evidence attribution for the feature “bindingsite:
hosphate (Thr) (covalent)” at amino acid residue 22.
ttribution includes a direct PMID citation on the feature
Fig. 3A) and an annotation-tagged text where a senten
ighlighted in the abstract and another sentence is q

rom the full-text paper (Fig. 3B). There are a total o
296 PSD protein sequence entries with 9788 experim

eature lines to be mapped. Currently, over 3700 fea
ines have been manually attributed with literature citat
alf of which also have evidence tagging in abstr
nd/or full-text articles. The status of citation mapping
vidence tagging for different feature types can be view
ttp://pir.georgetown.edu/cgi-bin/ipkLitFt.pl?stat=1.

The mapped citations and annotation-tagged texts no
rovide users with quality annotation, but can also serv
LP training data. For automatic citation mapping tasks
apped citations constitute the “positive” data set while o

itations in the Reference section that do not map to the g

http://pir.georgetown.edu/cgi-bin/ipklitft.pl?stat=1
http://pir.georgetown.edu/cgi-bin/ipklitft.pl?stat=2
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Table 1
Citation mapping and evidence tagging of experimental PTM features in
PIR-PSD

PTM types # Feature
lines

# Citation-
mapped

# Evidence-tagged

AB FL NA

Acetylation 664 636 (95.7%) 79 107 401
Glycosylation 626 322 (51.4%) 121 74 136
Methylation 238 198 (83.1%) 38 36 107
Phosphorylation 303 255 (84.1%) 159 58 43
Hydroxylation 206 94 (45.6%) 41 32 35

PTM, post-translational modification; AB, abstract; FL, full-text article; NA,
not tagged. (Data cited as of September 2004.)

ipkLitFt.pl?stat=2). The on-line table provides hypertext
links for each PTM type to several underlying datasets,
including the complete listing of all PSD entries with
mapped citations (PMIDs) as well as the complete collection
of evidence-tagged texts.

The PTM data sets can be exploited as NLP training and
benchmarking data for identifying each of the five individual
PTM types or, potentially, for the recognition and extraction
of generic PTMs. The data are now being used for PTM anno-
tation extraction by our collaborating computational groups.
One example is the automatic extraction of protein phospho-
rylation information, including agent (kinases), substrate, and
sites, from the abstract (Fig. 3C) using a rule-based system.
Another example is the use of abstracts tagged for the five
PTMs to train automatic classifiers to classify papers report-
ing PTMs based on support vector machine and Bayesian
näıve statistical approaches. These studies allow “computer-
assisted” retrospective literature survey and will facilitate
literature-based feature annotation for protein databases.

Furthermore, such literature mining studies can benefit
proteomic research because detecting protein PTMs (espe-
cially phosphorylation) is one of the major challenges in
large-scale proteomic analyses. PTMs found in proteomes
vary with cell and tissue types, and change in temporal man-
ners. Literature mining techniques can assist the creation
o e for
k owl-
e entifi
c hput
p rints.

4
r

es
f hy
m ins).
I ture
m ions
( tein
n lem
a ping

of bibliographic information to protein databases. The
challenge primarily stems from the long-standing problem
of protein nomenclature, where “profligate and undisciplined
labeling is hampering communication” (Nature, 1997). A
protein name is a label given to a protein object in the
scientific literature and in biological databases. Scientists
may name a newly discovered or characterized protein
based on its function, sequence features, gene name, cellular
location, molecular weight, or other properties, as well as
their combinations or abbreviations. Often the same protein
is named differently in different databases or publications,
and occasionally different proteins may share the same
name. Protein name standardization requires community
effort—only a small fraction of all proteins has standard
nomenclature, most notably, the IUBMB Enzyme Nomen-
clature (http://www.chem.qmul.ac.uk/iubmb/enzyme).

There has been a small body of text mining work di-
rectly addressing the protein name problem (Fukuda et al.,
1998; Yoshida et al., 2000; Zhou et al., 2004; Mika and
Rost, 2004). The applications generally use three com-
mon approaches–dictionary-based, rule-based, and machine
learning—and/or their combinations. The performance (pre-
cision and recall) of text mining techniques in biological
name recognition remain relatively low (75–80%) compared
to other domains. Multiple factors may be involved, includ-
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f a knowledgebase composed of experimental evidenc
nown PTMs that are mapped to protein entries. The kn
dgebase can then serve as a useful reference for the id
ation and characterization of peptides from high-throug
roteomic data such as those from peptide mass fingerp

. iProLINK resource for protein named entity
ecognition and ontology development

Protein named entity recognition (finding protein nam
rom literature texts) is a prerequisite for bibliograp
apping (identifying papers describing specified prote

t is also fundamental for several other biological litera
ining tasks, including the extraction of protein annotat

such as protein–protein interactions) from literature. Pro
amed entity recognition, however, is still an open prob
nd constitutes a bottleneck for computational map
-

ng absence of shared training and test sets for rigorous
ures of progress, lack of annotated training data sp
o biological tasks, pervasive ambiguity of terms, frequ
ntroduction of new terms, and a mismatch between e
ation tasks as defined for news report and for biolog
roblems (Hirschman et al., 2002b). iProLINK consists o
everal data sources that can be used for protein named
ecognition.

.1. Protein name dictionary and word token
ictionaries

Our protein name dictionary is derived from the pro
ame field in the iProClass database (Wu et al., 2004b),
hich consists of protein names from UniProt (Swiss-P
rEMBL, PIR-PSD) and RefSeq (Pruitt and Maglott, 2001).
fter the initial compilation, the dictionary undergo
everal filtering processes to generate unique protein n
including synonyms and acronyms), and to remove non
ical names and certain non-name annotations. For exa
ntry names such as “Inter-alpha-trypsin inhibitor(GIK-14)
Fragment)” were broken intoInter-alpha-trypsin inhibitor,
IK-14andFragment. The nameFragmentis later remove

rom the dictionary along with a list of other “bad” nam
uch ashypothetical protein, conserved hypothetical prote,
nnamed protein product, predicted protein, andpredicted
rotein of unknown function. In addition, words such asprob-
ble, putative, andsimilar to before protein names are a
emoved so that a name likeputative aspartate aminotran
erase Ais merged toaspartate aminotransferase Ato reduce
he redundancy. Derived from over 1.5 million iProCl

http://pir.georgetown.edu/cgi-bin/ipklitft.pl?stat=2
http://www.chem.qmul.ac.uk/iubmb/enzyme
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entries, the protein name dictionary currently has about
700,000 names, each of which is shown with its frequency
count.

Most protein names are composed of combinations of two
or more words (or tokens). Therefore, protein name rules can
be derived from tokenized protein words and used during
post-tagging processing to improve machine learning-based
named entity recognition. We have compiled specialized
single-word dictionaries by tokenization and classification
of protein names from 30,000 well-curated iProClass protein
entries (each containing at least five reference citations). The
dictionaries consist of individual word tokens categorized
into five classes:

• Biomedical terms (bt): these terms are used in a broad
range of biological and medical sciences. They mainly
describe structures of all forms of life at different levels
(from gross morphology to molecular structure), as well
as their respective functions and mechanisms in both nor-
mal (physiological) and diseased (pathological) states.

• Chemical terms (ct): these are words that describe organic
or inorganic chemical materials, chemical groups or bonds,
or chemical properties.

• Macromolecules (mc): these words refer to biopolymers
such as proteins, peptides, DNA, RNA, polysaccharides,
or glycoproteins.

• to
ch as
e

• um-
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guidelines. They were developed to test inter-annotator
reliability and can be used as a gold standard for different
machine-based protein name taggers or classifiers. Although
several name-tagged gold standards already exist, the
importance of inter-annotator reliability for machine-based
taggers has been seldom addressed. In reality, due to the
complex nature of protein naming, inter-annotator agreement
varies. One can consider the inter-annotator performance
as the upper-bound of the machine performance. To test
inter-annotator reliability, each literature corpus of 300 ab-
stracts was independently tagged by three individuals based
on a common tagging guideline. Two protein name tagging
guidelines (Versions 1.0 and 2.0) were developed and their
effect on inter-annotator performance was compared (Mani
et al., 2004). The major differences between the two tagging
guidelines are summarized inTable 2.

Guideline 1.0 defines how to tag protein objects, not pro-
tein named entities. This leads to inconsistent tagging by dif-
ferent annotators when protein names refer to non-protein
objects. Especially common inconsistency occurs when pro-
tein names are used in the context of gene-related objects
(such as gene, promoter, and mRNA). For example,photore-
ceptor G-protein alpha-subunit gene GNAT2refers to a gene
object, butphotoreceptor G-protein alpha-subunitis a pro-
tein name that was tagged by one annotator, but not the other
t .716
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a deed,
Common English (ce): common English words are used
describe various aspects or properties of proteins, su
short, signal, interacting, andrepair. These also includ
spelled-out form of Greek letters, such asalphaandbeta,
as well as stop words likeof, at, andto.
Non-word tokens: they are combinations of letters, n
bers, or symbols. They often are acronyms, synonym
abbreviations, such asDNAfor deoxyribonucleic acid,Ala
for alanine, andGH for growth hormone. The form of
non-word tokens can be number only, single letter, m
ple letters, or combinations of numbers, letters, and o
symbols. Non-word tokens may stand for biochemica
tities such as nucleic acids, nucleotides, and amino a

Protein name rules can be expressed based on the fi
en classes. Some examples include: (i) a protein name w
s not an acronym or abbreviations should have at least omc
ord, as innatural killer cell-activating factor, parathyroid
ormone receptor2, andglutathione transferase4; (ii) btand
twords alone cannot make protein names unless com
ith anmc word, as intranscription factor II, potassium
hannel, andnucleoside diphosphate phosphatase; and (iii)
umerals alone cannot be a protein name unless com
ith other symbols, as inp53, p38, andhsp70.

.2. Protein name tagging guidelines and name-tagged
orpora

Other iProLINK data resources for named entity rec
ition are two sets of literature corpora that were manu

agged with protein names based on two versions of tag
wo. As a result, the human tagging only achieved a 0
-measure among three annotators.

Guideline 2.0 defines tagging rules for protein named
ities regardless of the context of the object. An exclu
ist is given for generic terms such asprotein, subunit, ac-
ivator, andcarrier. Thus, in the above example,photore-
eptor G-protein alpha-subunitwill be tagged regardless
hat follows it. With the revised guideline, the second m
ally tagged data sets achieved a significantly higher i
nnotatorF-measure of 0.868. Notably, an automatic na

agger based on our protein name dictionary alone tagge
ame literature corpus with a performance of 0.41F-measure
ased on the human-tagged corpus. Considering that
ictionary-based name tags overlap with the correct t
ntities as judged by humans, the machine tagging ac

ound 68% of the protein named entities in the 300 abstr
herefore, dictionary-based pre-tagging can facilitate th
an tagging process by easing human reading and red
uman fatigue. In one example, the dictionary tagged m
le instances ofemerinin an abstract, one or more of whi
as missed by each of the three annotators.
The confusion between protein objects and protein na

ntities is also observed in the entity extraction task o
ioCreAtIve contest. The goal of this task was to as

he ability of an automated system to identify genes (or
eins, where there is ambiguity) mentioned in text. It spe
cally required the identification of terms in biomedical a
les that are gene or protein names. However, the distin
etween a named entity and a gene/protein object wa
xplicit in the contest guideline. This ambiguity may h
ffected the performance of some tagging programs. In
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Table 2
Comparisons of two versions of protein name tagging guidelines

Tagging guideline 1.0 Tagging guideline 2.0

Tagging target Protein object Protein named entity
Tag types <protein>, <acronym> and <array-protein> <protein> and <long-form>
Use of dictionary No dictionary Pre-tagging with protein name dictionary
Prior knowledge Major requirement Minor requirement
Inter-annotator performance F-measure: 0.716 F-measure: 0.868

several “false positives” tagged by one contested program
(Liu et al., 2004) may have been legitimate “mentioning of
genes/proteins.” Some examples aresuperoxide dismutasein
“ . . . may be involved in copper homeostasis and modula-
tion of copper/zincsuperoxide dismutase(Cu/ZnSOD) ac-
tivity in neurons” (PMID: 10550328),TCR-deltain “ . . . and
TCR-deltamRNA from lymph node” (PMID:10929051), and
Rad51in “ . . . arresting growth with S-phase DNA content,
and generate nuclearRad51foci, followed by cell death. . .”
(PMID: 11980714).

4.3. PIRSF family classification-based protein ontology

Biological ontologies are crucial for biological knowledge
management, including mining literature data to extract rel-
evant information and integrating information from multiple
databases. A protein ontology—consisting of names and syn-
onyms of protein classes as well as their relationships—can
be used to assist with protein named entity recognition. Fur-
thermore, an ontology based on protein family relationships,
such as the PIRSF classification system, can be mapped to and
complement the gene ontology (GO) (Ashburner et al., 2000).

The PIRSF (SuperFamily) classification system orga-
nizes proteins into a network structure from superfamilies to
subfamilies to reflect evolutionary relationship of full-length
p is
a bers
s n ar-
c ore
p The
fl to
s ing
d itrary
s logy
b logy
i .
o )
s such
a l

have
m ilies
t ated
P des,
a . Our
s can
c nism

to systematically examine the relationships between the three
GO sub-ontologies (molecular function, biological process
and cellular component) based on the shared annotations at
different protein family levels. (2) The PIRSF associations to
GO nodes can lead to interesting examinations as to whether
certain GO subtrees might need expansion if GO concepts
are too broad. (3) The comprehensive classification of related
protein families in PIRSF can also suggest identification of
missing GO nodes when entire groups of superfamilies or
families cannot be mapped to existing GO terms.

5. Conclusion

We have developed iProLINK as a resource to facilitate
text mining/NLP research in the areas of literature-based
database curation, named entity recognition, and ontology
development. The collection of data sources can be utilized
by computational or biological researchers to explore litera-
ture information on proteins and their features or properties.
Therefore, iProLINK serves as a knowledge link bridging
protein databases and scientific literature.
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